Metal–Organic Framework-Functionalized Alumina Membranes for Vacuum Membrane Distillation
نویسندگان
چکیده
Nature-mimetic hydrophobic membranes with high wetting resistance have been designed for seawater desalination via vacuum membrane distillation (VMD) in this study. This is achieved through molecular engineering of metal–organic framework (MOF)-functionalized alumina surfaces. A two-step synthetic strategy was invented to design the hydrophobic membranes: (1) to intergrow MOF crystals on the alumina tube substrate and (2) to introduce perfluoro molecules onto the MOF functionalized membrane surface. With the first step, the surface morphology, especially the hierarchical roughness, can be controlled by tuning the MOF crystal structure. After the second step, the perfluoro molecules function as an ultrathin layer of hydrophobic floss, which lowers the surface energy. Therefore, the resultant membranes do not only possess the intrinsic advantages of alumina supports such as high stability and high water permeability, but also have a hydrophobic surface formed by MOF functionalization. The membrane prepared under an optimum condition achieved a good VMD flux of 32.3 L/m2-h at 60 ◦C. This study may open up a totally new approach for design of next-generation high performance membrane distillation membranes for seawater desalination.
منابع مشابه
In this paper, the effect of nanocatalytic metal-organic framework based on copper metal and bis-tetrazolamine (CuBTA) ligand functionalized with cobalt (II) oxide nanoparticles on the thermal decomposition behavior of ammonium perchlorate (AP), using differential survey calorimetry (DSC) has been reviewed. First, the metal-organic framework (CuBTA) was synthesized from the raw materials of cop...
متن کاملAn Optimum Routine for Surface Modification of Ceramic Supports to Facilitate Deposition of Defect-Free Overlaying Micro and Meso (Nano) Porous Membrane
In this work, a simple and effective way to modify the support surface is developed and a nanostructure ceramic support to facilitate deposition of a defect-free overlying micro and meso (nano) porous membrane is obtained. To achieve high performance nanocomposite membranes, average pore size of outer surface of support was reduced by dip-coating in submicron and nano α-alumina slurries. In...
متن کاملThe Isolation of Organic Compounds using Organophilic Pervaporation Membranes
Organophilic membranes provide a method of recovering organic compounds by pervaporation, which exploits the selective transport of the organic phase. The main application is in the extraction of bio-alcohols from aqueous solution. The effect of membrane composition on performance in transporting alcohols and not water at improved rates is the focus of this review. In th...
متن کاملEfficient removal of cobalt(II) ion from aqueous solution using amide-functionalized metal-organic framework
In this study, an amide-functionalized metal-organic framework, namely TMU-24 was selected to adsorb Co(II) from wastewater with an adsorption capacity of 500 mg. g-1 in less than 20 minutes in neutral pH (pH=7). The effect of diverse parameters such as adsorbent dosage, competitive ions, and contact time on the adsorption process was investigated to find the optimal amounts of them. Also, the ...
متن کاملSynthesis and characterization of α-Alumina membrane supports and the binding effect of Poly (Vinyl Alcohol)
Ceramic Ultrafiltration membranes are considered as an alternative for the treatment of both stable water-in-oil and oil-in-water emulsions proved to be more effective in comparison with other conventional techniques. In this study, symmetric macro-porous ceramic membranes are prepared through dry pressing of α-alumina powder and the addition of various binders including Poly (vinyl alcohol). T...
متن کامل